
Deadline Fair Scheduling: Bridging the Theory and Practice of

Proportionate Fair Scheduling in Multiprocessor Systems ∗

Abhishek Chandra, Micah Adler and Prashant Shenoy

Department of Computer Science,

University of Massachusetts,

Amherst, MA 01003

{abhishek,micah,shenoy}@cs.umass.edu

Abstract

Proportionate-Fairness (P-fairness) is a strict notion of proportional-share allocation defined for real-

time systems, that generalizes easily to multiprocessor environments. In this paper, we present Deadline

Fair Scheduling (DFS), a proportionate-fair CPU scheduling algorithm for multiprocessor servers. A

particular focus of our work is to investigate practical issues in instantiating P-fair schedulers into con-

ventional operating systems. We show via a simulation study that characteristics of conventional operat-

ing systems such as the separate scheduling of individual processors, arrivals and departures of tasks, and

variable quantum durations can cause a P-fair scheduler such as DFS to become non-work-conserving.

To overcome this drawback, we combine DFS with an auxiliary work-conserving scheduler to ensure

work-conserving behavior at all times. We then propose techniques to account for processor affini-

ties while scheduling tasks in multiprocessor environments. We implement the resulting scheduler in the

Linux kernel and evaluate its performance using various applications and benchmarks. Our experimental

results show that DFS can achieve proportional allocation, performance isolation and work-conserving

behavior at the expense of a small increase in the scheduling overhead. We conclude that incorporating

practical considerations such as work-conserving behavior and processor affinities into a P-fair scheduler

such as DFS can result in a practical approach for scheduling tasks in a multiprocessor operating system.

1 Introduction

Recent advances in computing and communication technologies have led to a proliferation of demanding

applications such as streaming audio and video players, multi-player games, and online virtual worlds. A key

characteristic of these applications is that they impose (soft) real-time constraints, and consequently, require

predictable performance guarantees from the underlying operating system. Several resource management

techniques have been developed for predictable allocation of processor bandwidth to meet the needs of such

applications [10, 14, 15]. Proportionate fair schedulers are one such class of scheduling algorithms [6]. A

proportionate-fair (P-fair) scheduler allows an application to request xi time units every yi time quanta and

guarantees that over any T quanta, T > 0, a continuously running application will receive between ⌊xi

yi
· T ⌋

and ⌈xi

yi
· T ⌉ quanta of service. P-fairness is a strong notion of fairness, since it ensures that, at any instant,

∗An earlier version of this paper appeared in the Proceedings of the 21st IEEE Real-Time Technology and Applications Sym-

posium (RTAS 2001), Taipei, Taiwan ROC, May 2001.

1

no application is more than one quantum away from its due share. Another characteristic of P-fairness is that

it generalizes to environments containing multiple instances of a resource such as multiprocessor systems.

Several P-fair schedulers have been proposed over the past few years [1, 5, 17]. Most of these research

efforts have focused on theoretical analysis of these schedulers. In this paper, we consider practical issues

that arise when implementing a P-fair scheduler into a multiprocessor operating system kernel. Our research

effort leads to several contributions. First, we propose Deadline Fair Scheduling (DFS)—a multiprocessor

scheduling algorithm that is provably P-fair in the presence of certain system model assumptions that are

also made by most existing P-fair algorithms. However, DFS has the added advantage of being well-defined

even in the presence of typical characteristics of multiprocessor operating systems such as the asynchrony

in scheduling multiple processors, arrivals and departures of tasks, and variable quantum durations. We then

show using simulations that these characteristics can cause a P-fair scheduler such as DFS to become non-

work-conserving, and hence, to lose its property of P-fairness (We prove that a P-fair scheduling algorithm

is also work-conserving). Since a non-work-conserving scheduler also reduces the processor utilization by

causing a processor to remain idle even in the presence of runnable tasks, an important practical considera-

tion is to ensure work-conserving behavior at all times. To achieve this objective, we draw upon the concept

of fair airport scheduling [12] to combine DFS with an auxiliary work-conserving scheduler in order to

guarantee work-conserving behavior. Another practical consideration for multiprocessor schedulers is the

ability to take processor affinities [25] into account while making scheduling decisions—scheduling a task

on the same processor enables it to benefit from data cached from previous scheduling instances and im-

proves the effectiveness of a processor cache. We propose techniques that enable a P-fair scheduler such as

DFS to account for processor affinities; our technique involves a practical tradeoff between three conflicting

considerations—fairness, scheduling efficiency, and processor cache performance.

We have implemented DFS in the Linux operating system and have made the source code available to

the research community.1 We chose Linux over a real-time kernel since we are primarily interested in

examining the practicality of using a P-fair scheduler for multimedia and soft real-time applications and we

believe that such applications will typically coexist with traditional best-effort applications on a conventional

operating system. We experimentally evaluate the efficacy of our scheduler using various applications and

benchmarks. Our results show that DFS can achieve proportional allocation, application isolation and work-

conserving behavior, albeit at a slight increase in scheduling overhead. We conclude from these results that a

careful blend of theoretical and practical considerations can yield a P-fair scheduler suitable for conventional

multiprocessor operating systems.

The rest of this paper is structured as follows. Section 2 presents basic concepts in fair proportional-

share scheduling. Section 3 presents our deadline fair scheduling algorithm. Sections 4 and 5 discuss two

practical issues in implementing DFS, namely work-conserving behavior and processor affinities. Section 6

presents the details of the DFS implementation in Linux. Section 7 presents the results of our experimental

evaluation and we conclude in Section 8.

1See http://lass.cs.umass.edu/software/gms.

2

2 ProportionalShare Scheduling and ProportionateFairness: Background

Popular applications such as streaming audio and video and multi-player games have timing constraints

and require performance guarantees from the underlying operating system. Such applications fall under

the category of soft real-time applications—due to their timing constraints, the utility provided to users

is maximized by maximizing the number of real-time constraints (e.g., deadlines) that are met, but unlike

hard real-time applications, occasional violations of these constraints do not result in incorrect execution or

catastrophic consequences.2

Several resource management mechanisms have been developed to explicitly deal with soft real-time

applications [4, 10, 11, 14, 15, 16, 18, 19, 26]. These mechanisms broadly fall under the category of

proportional-share schedulers—these schedulers associate an intrinsic rate with each application and al-

locate bandwidth in proportion to the specified rates. One class of proportional-share schedulers are based

on generalized processor sharing (GPS) [19]. GPS assumes that tasks can be serviced in terms of infinites-

imally small time quanta, and hence GPS-fairness allocates CPU bandwidth to tasks in the proportion of

their weights at all times. Practical instantiations of GPS such as weighted fair sharing [9, 20] and start-

time fair queuing [11] provide looser bounds on how far tasks can be from their GPS shares at any time.

Proportionate-fair (P-fair) schedulers are another class of proportional-share schedulers based on the no-

tion of proportionate progress [6]. Under this notion, each application requests xi quanta of service every

yi time quanta. The scheduler then allocates processor bandwidth to applications such that, over any T time

quanta, T > 0, a continuously running application receives between ⌊xi

yi
·T ⌋ and ⌈xi

yi
·T ⌉ quanta of service.

P-fairness is a strong notion of fairness, since it ensures that, at any instant, no application is more than

one quantum away from its due share. Unlike GPS, P-fairness assumes that applications are allocated finite

duration quanta (and thus is a more practical notion of fairness). In addition, it ensures tighter bounds on

the possible unfairness than practical instantiations of GPS.

Several algorithms have been proposed that achieve P-fairness in an ideal model—synchronized, fixed

quantum durations and a fixed task set [1, 5, 17]. In practice, however, these ideal conditions do not hold

in real systems. Blocking or I/O events might cause an application to relinquish the processor before it

has used up its entire allocated quantum, and hence, quantum durations tend to vary from one quantum to

another. These variable quantum lengths also result in asynchronous scheduling of multiple processors in

a multiprocessor system, i.e., each processor calls the scheduler independently, and hence, the scheduling

of tasks on different processors is not simultaneous. Moreover, P-fairness implicitly assumes that the set of

tasks in the system is fixed. In practice, arrivals and departures of tasks as well as blocking and unblocking

events can cause the task set to vary over time.

Several recent research efforts have focused on relaxing some of the above assumptions of the ideal

system model. Recently, conditions for task arrivals and departures have been derived for a P-fair algorithm

that avoids any deadline misses [23]. The goal of our work is to allow any arrival/departure pattern in

the system, even if it results in occasional deadline violations. In addition, the notion of P-fairness has been

2Multimedia/streaming media applications are an important subset of the class of soft real-time applications. Note that, there

could be other applications such as virtual reality that are soft real-time but do not involve streaming audio and video.

3

generalized to other models of sporadic and non-periodic tasks [22, 24] and for soft real-time tasks [21]. The

focus of our work is orthogonal to these efforts, as our goal is to exploit the notion of periodicity to provide

proportional-share for tasks that may fit any kind of computational model. In addition, we also consider a

system model with variable quantum lengths and asynchronous scheduling of multiple processors, that has

not been considered by these research efforts.

In this paper, we propose an algorithm that achieves P-fairness in the presence of the above-mentioned

ideal system assumptions. In addition, this algorithm is clearly defined even when the system has variable

quantum durations and arrivals and departures of tasks. To seamlessly account for these non-ideal system

conditions, in this paper, we use a modified definition of P-fairness for the ideal model: Let φi denote the

share of the processor bandwidth that is requested by task i in a p-processor system. Then, over any T time

quanta, T > 0, a continuously running application should receive between ⌊ φi
∑

j φj
· pT ⌋ and ⌈ φi

∑

j φj
· pT ⌉

quanta of service. Observe that, in the ideal model, this definition reduces to the original definition of P-

fairness in the case where φi = xi

yi
and

∑

j φj = p (which corresponds to the tasks using up all the quantums

available on the processors).

Another dimension for classifying schedulers is whether they are work-conserving or non-work-conserving.

A scheduler is defined to be work-conserving if it never lets a processor idle as long as there are runnable

tasks in the system. Non-work-conserving schedulers, on the other hand, can let a processor idle even

in the presence of runnable tasks. Intuitively, a work-conserving proportional-share scheduler treats the

shares allocated to an application as lower-bounds—a task can receive more than its requested share if

some other task does not utilize its share. A non-work-conserving proportional-share scheduler treats these

shares as upper-bounds—a task does not receive more than its requested share even if a processor is idle.

To achieve good resource utilization, schedulers employed in conventional operating systems tend to be

work-conserving in nature. The notion of P-fairness has been extended to incorporated work-conserving

behaviour [2, 3] that relaxes the upper bound on the CPU service received by a task. We consider alternate

ways of enhancing P-fair schedulers to achieve work-conserving behavior.

In what follows, we first present our scheduling algorithm for multiprocessor environments based on the

notion of proportionate-fairness. We then consider two practical issues that will require us to relax the notion

of strict P-fairness (i.e, we trade strict P-fairness for more practical considerations).

3 Deadline Fair Scheduling

3.1 System Model

Consider a p-processor system that services N tasks. At any instant, some subset of these tasks will be

runnable while the remaining tasks are blocked on I/O or synchronization events. Let n denote the number

of runnable tasks at any instant. In such a scenario, the CPU scheduler must decide which of these n tasks

to schedule on the p processors. We assume that each scheduled task is assigned a quantum duration of

qmax; a task may either utilize its entire allocation or voluntarily relinquish the processor if it blocks before

its allocated quantum ends. Consequently, as is typical on most multiprocessor systems, we assume that

4

quanta on different processors are neither synchronized with each other, nor do they have a fixed duration.

An important consequence of this assumption is that each processor needs to individually invoke the CPU

scheduler when its current quantum ends, and hence, scheduling decisions on different processors are not

synchronized with one another.

Given such an environment, assume that each task specifies a share φi that indicates the proportion of

the processor bandwidth required by that task. Since there are p processors in the system and a task can

run on only one processor at a time, each task cannot ask for more than 1
p

of the total system bandwidth.

Consequently, a necessary condition for feasibility of the current set of tasks is as follows:

φi
∑n

j=1 φj

≤
1

p
(1)

We refer to this condition as the weight feasibility constraint. This constraint can be maintained by employ-

ing admission control on task arrivals and departures, or using a weight readjustment algorithm [7]. Our

Deadline Fair Scheduling (DFS) algorithm achieves allocations corresponding to these weights based on the

notion of proportionate-fairness. To see how this is done, we first present the intuition behind our algorithm

and then provide the precise details.

3.2 DFS: Key Concepts

Conceptually, DFS schedules each task periodically; the period of each task depends on its share φi. DFS

uses an eligibility criterion to ensure that each task runs at most once in each period and uses internally

generated deadlines to ensure that each task runs at least once in each period. The eligibility criterion

makes each task eligible at the start of each period; once scheduled on a processor, a task becomes ineligible

until its next period begins (thereby allowing other eligible tasks to run before the task runs again). Each

eligible task is stamped with an internally generated deadline. The deadline is typically set to the end of its

period in order for the task to run by the end of its period. DFS schedules eligible tasks in earliest deadline

first order to ensure each task receives its due share before the end of its period. Together, the eligibility

criterion and the deadlines allow each task to receive processor bandwidth based on the requested shares,

while ensuring that no task gets more or less than its due share in each period. The following example

illustrates this process.

Example 1 Consider a dual-processor system that services three tasks with shares φ1 = 2 and φ2 = φ3 = 1.

This could correspond to the tasks asking for (x1, y1) = (1, 1) and (x2, y2) = (x3, y3) = (1, 2). The

requested allocation can be achieved by running the first task continuously on one processor and alternating

between the other two tasks on the other processor. We show how this can be done using periods and

deadlines. The period of the first task can be set to 1 and that of the other two tasks to 2. Thus, task 1

becomes eligible every time unit, while tasks 2 and 3 become eligible every other time unit. Once eligible, a

task is stamped with a deadline that is the end of its period. Once scheduled, a task remains ineligible until

its next period begins. At t=0, all tasks become eligible and have deadlines d1 = 1, d2 = d3 = 2. Since

tasks are picked in EDF order, tasks 1 and 2 get to run on the two processors (assuming that the tie between

5

Time

p=1
d=1

p=1
d=2

p=2
d=2

p=2
d=2

p=1
d=3

p=1
d=4

p=1
d=5

p=1
d=6

p=2
d=4

p=2
d=4

p=2
d=6

p=2
d=6

0 1 2 3 4 5 6

{T1,T2,T3}{T1,T2,T3} {T1,T2,T3}

Ineligible:

Eliglble:

CPU #1

CPU #2

Task 1: Task 2: Task 3:

period

deadline

{T1.T3} {T1.T3} {T1.T3}

{T2} {T2} {T2}

x1=y1=1 x2=1,y2=2 x3=1,y3=2

Figure 1: Use of deadlines and periods to achieve proportionate allocation.

tasks 2 and 3 is resolved in favor of task 2). Task 2 then becomes ineligible until t = 2 (the start of its next

period). Task 1 becomes eligible again since its period is 1, while task 3 is already eligible. Since there

are only two eligible tasks, tasks 1 and 3 run next. The whole process repeats from this point on. Figure 1

illustrates this scenario.

To intuitively understand how the eligibility criteria and deadlines are determined, let us assume that the

quantum length=1, that each task always runs for an entire quantum, and that there are no arrivals or depar-

tures of tasks into the system. The actual scheduling algorithm does not make any of these assumptions; we

do so here for simplicity of exposition. Let mi(t) be the number of times that task i has been run up to time

t, where time 0 is the instant in time before the first quantum, time 1 is the instant in time between the first

and second quanta, and so on. With these assumptions, to maintain P-fairness, we require that for all times

t and tasks i,

⌊(

φi
∑n

j=1 φj

)

· t · p

⌋

≤ mi(t) ≤

⌈(

φi
∑n

j=1 φj

)

· t · p

⌉

.

where (t · p) is the total processing capacity on the p processors in time [0, t). The eligibility requirements

ensure that mi(t) never exceeds this range, and the deadlines ensure that mi(t) never falls short of this range.

In particular, for task i to be run during a quantum, it must be the case that at the end of that quantum, mi(t)

is not too large. Thus, we specify that task i is eligible to be run at time t only if

mi(t) + 1 ≤

⌈(

φi
∑n

j=1 φj

)

· (t + 1) · p

⌉

. (2)

The deadlines ensure that a job is always run early enough that mi(t) never becomes too small. Thus, at

time t we specify the deadline for the completion of the next run of task i (which will be the (mi(t) + 1)th

run) to be the first time t′ such that

mi(t) + 1 ≤

⌊(

φi
∑n

j=1 φj

)

· t′ · p

⌋

.

6

Since mi(t) and t′ are always integers, this is equivalent to setting

t′ =

⌈

(mi(t) + 1) ·

(

∑n
j=1 φj

p · φi

)⌉

. (3)

With our assumptions (no arrivals or departures, and every task always runs for a full quantum), it can

be shown that, if at every time step, we run the p eligible tasks with smallest deadlines (with suitable rules

for breaking ties, described later in Section 3.3), then no task will ever miss its deadline. This, combined

with the eligibility requirements, ensures that the resulting schedule of tasks is P-fair. That schedule is also

work-conserving.

Since the actual scenario where we apply this algorithm has both variable length quantum durations, as

well as arrivals and departures, the actual DFS algorithm uses a slightly different method for accounting

for the amount of CPU service that each task has achieved. This greatly simplifies the accounting for the

scenario we need to deal with. We also see in Section 4 that in this more difficult scenario, the algorithm

is not work-conserving, and we shall remedy this by enhancing the DFS algorithm with an auxiliary work-

conserving algorithm. As we shall see, the method of accounting that we use for the DFS algorithm also

interfaces very easily with these enhancements.

We now describe the accounting method employed by DFS. Let Si denote the weighted CPU service

received by a task so far. In GPS-based algorithms such as WFQ [9] and SFQ [13], the quantity Si is

referred to as the start tag of task i; we use the same terminology here. All tasks that are initially in the

system start with a value of Si set to 0. Whenever task i is run, Si is incremented as Si = Si + 1
φi

, so that

after running mi(t) times, the start tag of task i would be Si = mi(t)
φi

. Next, we define the virtual time v in

the system as the weighted average of the progress made by all the tasks in the system at time t:

v =

∑

j φj · Sj
∑

j φj

.

Note that (
∑

j φj · Sj) is the total CPU service used by all the tasks in the system, so that at time t, this

quantity would be equal to (t · p). Thus, substituting Si = mi(t)
φi

and v = t·p
∑

j φj
into (2), we see that the

eligibility criterion becomes

Si · φi + 1 ≤

⌈

φi ·

(

v +
p

∑

j φj

)⌉

.

Finally, we define Fi, the finish tag of task i, to be the weighted CPU service received by task i at the end

of its next run. Then, Fi = Si + 1
φi

. Hence, substituting Fi = mi(t)+1
φi

into (3), we see that the deadline for

task i becomes

t′ =

⌈(

∑

j φj

p

)

· Fi

⌉

.

Together, the eligibility condition and the deadlines enable DFS to ensure P-fair allocation. Having provided

the intuition for our algorithm, in what follows, we provide the details of our scheduling algorithm.

7

3.3 Details of the Scheduling Algorithm

The precise DFS algorithm is as follows:

• Each task in the system is associated with a share φi, a start tag Si and a finish tag Fi. When a new

task arrives, its start tag is initialized as Si = v, where v is the current virtual time of the system

(defined below). When a task runs on a processor, its start tag is updated at the end of the quantum

as Si = Si + q
φi

, where q is the duration for which the thread ran in that quantum. If a blocked task

wakes up, its start tag is set to the maximum of its previous start tag and the virtual time. Thus, we

have

Si =

{

max(Si, v) if the thread just woke up

Si + q
φi

if the thread is run on a processor
(4)

After computing the start tag, the new finish tag of the task is computed as Fi = Si + q̄
φi

, where q̄

is the maximum amount of time that task i can run the next time it is scheduled. Note that, if task i

blocked during the last quantum it was run, it will only be run for some fraction of a quantum the next

time it is scheduled, and so q̄ may be smaller than qmax.

• Initially the virtual time of the system is zero. At any instant, the virtual time is defined to be the

weighted average of the CPU service received by all currently runnable tasks. Defined as such, the

virtual time may not monotonically increase if a runnable task with a start tag that is above average

departs. To ensure monotonicity, we set v to the maximum of its previous value and the current

average CPU service. That is,

v = max

(

v,

∑n
j=1 φj · Sj
∑n

j=1 φj

)

(5)

If all processors are idle, the virtual time remains unchanged and is set to the start tag (on departure)

of the thread that ran last.

• At each scheduling instance, DFS computes the set of eligible tasks from the set of all runnable tasks

and then computes their deadlines as follows, where qmax is the maximum size of a quantum.

– Eligibility Criterion: A task is eligible if it satisfies the following condition.

Siφi

qmax

+ 1 ≤

⌈

φi

(

v

qmax

+
p

∑n
j=1 φj

)⌉

. (6)

– Deadline: Each eligible task is stamped with a deadline of

⌈

Fi

qmax

·

(

∑n
j=1 φj

p

)⌉

(7)

DFS then picks the eligible task with the smallest deadline and schedules it for execution. Ties are broken

using the following two tie-breaking rules:

8

• Rule 1: If two (or more) eligible tasks have the same deadline, pick the task i (if one exists) such that

⌊

Fi

qmax

·

(

∑n
j=1 φj

p

)⌋

<

⌈

Fi

qmax

·

(

∑n
j=1 φj

p

)⌉

.

Intuitively, such a task becomes eligible for its next period before its current deadline expires, and

hence, we can have more eligible tasks in the system if this task is given preference to one that

becomes eligible later than its deadline.

• Rule 2: If multiple tasks satisfy rule 1, then pick the task with the maximum value of ⌈Gi⌉, where, Gi

is the group deadline [1] of the task i, and is computed as follows.

Gi = 0 if

(

p · φi
∑n

j=1 φj

)

<
1

2
.

Otherwise, initially,

Gi =
p · φi

(
∑n

j=1 φj) − p · φi

.

From then on, whenever

⌈Gi⌉ ≤

⌈

Fi

qmax

·

(

∑n
j=1 φj

p

)⌉

,

Gi is incremented by

∑n
j=1

φj

(
∑n

j=1
φj)−p·φi

.

Intuitively, this is the task that has the most severe constraints on its subsequent deadlines.

Any further ties are broken arbitrarily. These tie-breaking rules are required to ensure P-fairness in the ideal

scenario where there are no arrivals or departures, and every task always runs for a full quantum.

3.4 Properties of DFS

We now show that DFS is P-fair as well as work-conserving in an ideal system model that makes the

following assumptions. We assume that the ideal system model is a p-CPU symmetric multiprocessor system

running a fixed set of n tasks. Further, we assume that the quanta of all the CPUs are synchronized. This

means that (i) quantum lengths are fixed (without loss of generality, assume quantum length to be 1), and

(ii) each time the scheduler is called, it picks a set of p tasks to run on the p CPUs for the next quantum

duration. Finally, we assume that there is no processor affinity, i.e., any task can be executed on any CPU.

Given such a model, we show that DFS reduces to a P-fair scheduling algorithm proposed in [1], and

using this reduction, we prove the properties achieved by DFS in such an ideal model. In the following,

we define a feasible set of tasks to be one in which each task i with share φi satisfies the weight feasibility

constraint (Equation 1).

Theorem 1 Given a set of feasible tasks, DFS always generates a P-fair schedule.

9

Proof:

To prove this theorem, we show that, in the ideal system model, DFS reduces to a P-fair scheduling

algorithm proposed in [1] (we would refer to this as the PF-priority algorithm). Thus, we show that the

schedule produced by DFS is exactly the same as that produced by the PF-priority algorithm, which has

been proved to be a P-fair schedule in [1]. For our proof, we distinguish between a time quantum (slot)

which we define as the execution unit for a single CPU, and time unit which we define as the elapsed time

measured in quantum units. This implies that the system as a whole executes p quanta every time unit.

To reduce DFS to PF-priority in the ideal system model, we show the equivalence of the concepts used in

the two algorithms. These concept equivalences are outlined below:

• Periodic Tasks:

In PF-priority, each task T is assumed to be periodic with a requirement (T.e, T.p), where T.e is the

task’s execution cost and T.p is the task’s period. This means that the task T has to execute for T.e

time quanta (slots) every T.p time units.

We will refer to a generic task as i, and refer to its execution cost and period as xi and yi respectively.

Thus, for the PF-priority algorithm,

xi

yi

=
T.e

T.p
. (8)

In the case of DFS, each task i is assumed to have a weight φi, and the CPU share it receives is
φi

∑n
j=1 φj

. Note that, if the task is considered periodic with a requirement (xi, yi), then, it executes xi

time quanta every (p · yi) time quanta (as the number of time quanta executed every time unit in the

system is p). Hence,

xi

p · yi

=
φi

∑n
j=1 φj

Thus, for DFS,

xi

yi

= p ·
φi

∑n
j=1 φj

. (9)

• Subtasks and runs:

In the case of PF-priority, each task T is further subdivided into subtasks, each of which needs to

execute for one quantum. The kth subtask is referred to as Tk.

Equivalently, in case of DFS, each task i consists of a series of runs of one quantum each. The number

of runs completed by the task at time t is denoted by mi(t).

• Release times and eligibility criteria:

In the case of PF-priority, each subtask is released at a specific time into the system, called its pseudo-

release time. The kth subtask Tk is released at time r(Tk) such that

r(Tk) =

⌊

(k − 1) · T.p

T.e

⌋

10

Using (8), we have

r(Tk) =

⌊

(k − 1) ·
yi

xi

⌋

(10)

In the case of DFS, each task i has to satisfy an eligibility criterion to be eligible to run. This eligibility

criterion is defined in (6) as

Siφi

qmax

+ 1 ≤

⌈

φi

(

v

qmax

+
p

∑n
j=1 φj

)⌉

Since quantum size is assumed to be fixed (and equal to 1), using the definitions of Si and v as defined

in section 3.2 (namely, Si =
mi(t)

φi

and v =
t · p

∑n
j=1 φj

) and (9), the eligibility criterion for the task at

time t becomes

mi(t) + 1 ≤

⌈

(t + 1) ·
xi

yi

⌉

Thus, a task becomes eligible (is released) for its kth run at the minimum time t = rk which satisfies

the above condition. Note that k = mi(t) + 1 in this case. This is equivalent to saying that time rk

satisfies

k =

⌈

(rk + 1) ·
xi

yi

⌉

and

k =

⌈

rk ·
xi

yi

⌉

+ 1

Using the definition of the ceiling function, these equations can be rewritten as

(rk + 1) ·
xi

yi

≤ k < (rk + 1) ·
xi

yi

+ 1

and

rk ·
xi

yi

≤ k − 1 < rk ·
xi

yi

+ 1

Combining these two sets of inequalities, we get

(k − 1) ·
yi

xi

− 1 < rk ≤ (k − 1) ·
yi

xi

Using the definition of the floor function, this is equivalent to

rk =

⌊

(k − 1) ·
yi

xi

⌋

(11)

This is the same as (10) which implies that both DFS and PF-priority use the same release times for

their subtasks (runs).

11

• Deadlines:

In the case of PF-priority, each subtask is required to start execution by a specific time called its

pseudo-deadline. The pseudo-deadline of the kth subtask Tk is defined as the time d(Tk) such that

d(Tk) =

⌈

k · T.p

T.e

⌉

− 1

Using (8), we have

d(Tk) =

⌈

k ·
yi

xi

⌉

− 1 (12)

In the case of DFS, each task is required to finish execution by a specific time called its deadline.

Thus, at time t, the deadline for the task’s next run is defined in (7) as

d(t) =

⌈

Fi

qmax

·

(

∑n
j=1 φj

p

)⌉

Again, since quantum size is assumed to be fixed (and equal to 1), using the definition of Fi as defined

in section 3.2 (namely, Fi =
(mi(t) + 1)

φi

=
k

φi

, assuming the next run is the task’s kth run) and (9),

we have the deadline for the kth run as

dk =

⌈

k ·
yi

xi

⌉

(13)

Comparing (12) and (13), we can see that both DFS and PF-priority assign the same deadlines to their

subtasks (runs).3

Both DFS and PF-priority schedule the eligible (or released) tasks (subtasks) in the order of their

deadlines (pseudo-deadlines). If two tasks have the same deadlines, then they apply the following

tie-breaking rules.

• Tie-breaking Rule 1:

If two released subtasks have the same deadline, then PF-priority gives precedence to the subtask Tk

(if one exists) for which

r(Tk+1) = d(Tk). (14)

DFS uses the following tie-breaking rule (section 3.3) to decide between eligible tasks with the same

deadline. It gives precedence to the task i (if one exists) such that

⌊

Fi

qmax

·

(

∑n
j=1 φj

p

)⌋

<

⌈

Fi

qmax

·

(

∑n
j=1 φj

p

)⌉

.

3Note that the difference of 1 in the deadline values is due to the way they are defined in each algorithm, with DFS defining

the deadline as the end of the last possible quantum and PF-priority defining the deadline as the start of the last possible quantum.

Further, this difference does not affect the schedules of the two algorithms, as the tasks are chosen in order of their deadlines, which

is not affected by this difference of 1 quantum.

12

Again, using the definition of Fi, etc., this rule can be written as

⌊

k ·
yi

xi

⌋

<

⌈

k ·
yi

xi

⌉

,

which is the same as

rk+1 = dk − 1, (15)

using the definitions of rk+1 and dk, and the properties of the floor and ceiling functions.

From (14) and (15), we can see that both DFS and PF-priority have the same tie-breaking rule 1

(Recall the difference in the definition of deadlines for the two algorithms).

• Tie-breaking Rule 2:

PF-priority defines the notion of a group deadline for a subtask of a task T . If two subtasks are tied

even after applying the tie-breaking rule 1, then PF-priority gives precedence to the subtask with the

higher value of its group deadline.

The group deadline G(Tk) for the kth subtask of a task is defined as follows.

First of all, define a job J to consist of all the subtasks in a period T.p.

If
T.e

T.p
<

1

2
, then, G(Tk) = 0 (Such a task is called a light task).

Otherwise (for a heavy task), the jth group deadline in a job J is computed as

tj =

⌈

T.e + (j − 1) · T.p

T.p − T.e

⌉

Thus, if k = l · T.e + k′, then, G(Tk) is defined to be smallest t = l · T.p + tj such that t > d(Tk).

Thus, the group deadlines form the sequence

l · yi +

⌈

xi + (j − 1) · yi

yi − xi

⌉

,∀l ≥ 0, 0 ≤ j ≤ yi − xi, (16)

using the definition of xi and yi from (8).

DFS borrows the definition of group deadlines from the PF-priorities algorithm. It defines the notion

of group deadline Gi of a task i as follows.

Again, just like PF-priorities, if
p · φi
∑n

j=1 φj

<
1

2
, i.e., if

xi

yi

<
1

2
, then, Gi = 0.

Otherwise, Gi is computed as follows. Initially,

Gi =
p · φi

(
∑n

j=1 φj) − p · φi

=
xi

yi − xi

From then on, Gi is incremented by

∑n
j=1 φj

(
∑n

j=1 φj) − p · φi

=
yi

yi − xi

13

whenever

⌈Gi⌉ ≤

⌈

Fi

qmax

·
(
∑n

j=1
φj

p

)

⌉

i.e., ⌈Gi⌉ ≤ dk,

where, dk is the pseudo-deadline for the kth run of task i.

DFS gives precedence to a task with higher value of ⌈Gi⌉. It follows that the value of ⌈Gi⌉ at any

time t is the smallest value > dk from the sequence

l · yi +

⌈

xi + (j − 1) · yi

yi − xi

⌉

,∀l ≥ 0, 0 ≤ j ≤ yi − xi (17)

From the sequences 16 and 17, it follows that both DFS and PF-priority use the same tie-breaking rule

2 as well.

Any further ties are broken arbitrarily by both DFS and PF-priority.

From the equivalence relations shown between the concepts used by DFS and PF-priority above and their

rules for selecting tasks, it follows that at each time instant, DFS and PF-priority make identical choices for

the next set of tasks to run. Thus, they produce identical schedules. Since it has been proven in [1] that

PF-priority produces a P-fair schedule, we have shown that DFS produces a P-fair schedule as well.

Theorem 2 Given a set of feasible tasks, DFS is work-conserving.

Proof:

Using the relation given in (9), the weight feasibility constraint (1) can be rewritten as

xi

yi

≤ 1

This condition specifies that no task asks to run more than once every time unit or on more than one CPU

simultaneously.

Further, again using (9), we have,

n
∑

j=1

xi

yi

= p ·
n
∑

j=1

φi
∑n

j=1 φj

= p

This implies that if every task i executes xi quanta every yi time units, then the total number of time

quanta used up by all the tasks during every period of
∑n

j=1 yi time units is exactly p ·
∑n

j=1 yi. In other

words, the utilization of each CPU in every period is exactly 1.

By Theorem 1, DFS produces a P-fair schedule. By the definition of P-fairness [6], every P-fair schedule

is also a periodic schedule. Thus, DFS ensures that every task i executes xi quanta every yi time units.

Hence, the CPU utilization for a DFS schedule is 1, i.e., no CPU is idle as long as there are runnable tasks

in the system.

This proves that DFS is work-conserving for a feasible set of tasks.

In the next two sections, we examine two practical issues, namely work-conserving behavior and proces-

sor affinities, that arise when implementing DFS in a multiprocessor operating system.

14

4 Ensuring Workconserving Behavior in DFS

As indicated in Section 3.4, DFS is provably work-conserving under the ideal system model assumptions

of a fixed task set and synchronized fixed length quanta. However, neither assumption holds in a typical

multiprocessor system. In this section, we examine via a simulation study if DFS is work-conserving in the

absence of these assumptions. It is possible for DFS to become non-work-conserving since the scheduler

might mark certain runnable tasks as ineligible, resulting in fewer eligible tasks than processors (causing

one or more processors to idle even in the presence of runnable tasks in the system). In what follows, we

first present the methodology employed for our simulations and then present our results.

4.1 Behavior of DFS in a Conventional Operating System Environment

The methodology for our simulation study is as follows. We start with an ideal system model that assumes a

fixed task set and synchronized and fixed length quanta. We then relax each assumption in turn and study the

impact of doing so on the work-conserving nature of the scheduler. Specifically, we start with an ideal system

where the set of tasks is static, quanta are fixed and synchronized, and tasks are scheduled on the p processors

simultaneously. Next we add asynchrony to this system by allowing each processor to independently invoke

the scheduler when its current quantum ends (i.e., tasks are scheduled one at a time instead of p at a time;

the quantum duration and the task set remain fixed). We then allow variable quantum lengths in this system

by letting the quantum duration vary on different processors. Finally, we allow arrivals and departures of

tasks in the system so as to allow the task set to vary over time. At each step, we measure the percentage

of CPU cycles for which the system becomes non-work-conserving and the number of processors that are

simultaneously idle in the non-work-conserving mode. Such a step-by-step study helps us to determine if

the system exhibits non-work-conserving behavior, and if so, the primary cause for this behavior. If our

simulations indicate that the percentage of time for which the system is non-work-conserving is zero or

small, then a P-fair scheduler such as DFS can be instantiated in a conventional multiprocessor operating

system without any modifications. In contrast, if the system becomes non-work-conserving for significant

durations, then we will need to consider remedies to correct this behavior.

To conduct our simulation study, we simulate multiprocessor systems with 2, 4, 8, 16 and 32 processors.

We initialize the system with a certain number of tasks. In the scenario where arrivals and departures are

allowed, we generate these events using exponential distributions for inter-arrival and inter-departure times;

the mean rates of arrivals and departures are chosen to be identical to keep the system stable. The processor

share φi requested by each task is chosen randomly from a uniform distribution and we ensure that requested

shares are feasible at all times. Similar to most operating systems, our simulations measure time in units of

clock ticks (for instance, Linux measures its quanta in units of jiffies, each jiffy being equal to 10ms). The

maximum quantum duration is set to 10 ticks. In the scenario where the quantum duration can vary, we do

so by using a uniform distribution from 1 to 10 ticks. We simulate each of our four scenarios for 10,000

ticks and repeat the simulation 1,000 times, each with a different seed (so as to simulate a wide range of task

mixes). We obtain the following results from our study:

15

0

2

4

6

8

10

12

0 20 40 60 80 100

Id
le

 C
P

U
 c

yc
le

s
(%

)

Avg. number of threads in the system

Asynchronous quanta, no arrivals/departures

2 cpus
4 cpus
8 cpus

16 cpus
32 cpus

0

20

40

60

80

100

1 1 4 1 8 1 16 1 32

%
 o

f n
on

-w
or

k-
co

ns
er

vi
ng

 c
lo

ck
 ti

ck
s

Number of CPUs simultaneously idle

Asynchronous quanta, no arrivals/departures

2 cpus
4 cpus

8 cpus

16 cpus

32 cpus

(a) Variation with number of tasks (b) Number of simultaneously idle processors

Figure 2: Effect of asynchronous quanta on the work-conserving behavior.

• Ideal system: As expected, our simulation results (not shown here) showed that DFS is work-conserving

in an ideal system where the set of tasks is fixed and quanta are synchronized and of fixed length,

which conforms to the theoretical properties (Theorem 2) proved in Section 3.4.

• Asynchronous quanta: We add asynchrony to the system by allowing each processor to independently

invoke the scheduler when its current quantum ends; the length of each quantum is fixed and so are

the number of tasks in the system. What this means is that instead of scheduling p tasks on the p CPUs

simultaneously, each CPU schedules a task individually as happens on real multiprocessor systems.

As shown in Figure 2(a), this causes the system to become non-work-conserving. The non-work-

conserving behavior is most pronounced when the number of tasks in the system is close to the number

of processors; for such cases, the fraction of CPU cycles wasted due to one or more processors being

idle is as large as 12%. The figure also shows that increasing the number of runnable tasks causes

an increase in the number of eligible tasks in the system and thereby reduces the chances of the

system becoming non-work-conserving. Figure 2(b) plots a histogram of the number of processors

that simultaneously remain idle when the system is non-work-conserving. As shown in the figure,

multiple processors can simultaneously become idle in the non-work-conserving state, which degrades

overall system utilization.

The reason for this non-work-conserving in the presence of asynchronous quanta is the asynchronous

updates made by the algorithm for each CPU. The scheduling algorithm updates the various quanti-

ties such as the start tag and finish tag of the running task and the virtual time whenever a CPU is

scheduled. These updates happen in an asynchronous manner, so that the scheduler does not have

a completely up-to-date state of the system at all times. This discrepancy leads to some tasks being

considered ineligible even when they would actually be eligible for running. This causes some CPUs

to remain idle even in the presence of runnable tasks.

• Variable length quanta: Next, we let the quantum lengths vary but keep the number of tasks in the

system fixed. The results obtained for this scenario (asynchronous variable-length quanta) are similar

16

to those obtained in the previous scenario (asynchronous fixed-length quanta), and hence, are not

shown here. These results indicate that the asynchrony in scheduling is the primary cause for non-

work-conserving behavior and variable length quanta does not substantially worsen this behavior.

• Arrivals and departures: Our final scenario adds arrivals and departures to the system. Here, we use

a Poisson process to introduce task arrivals into the system and another Poisson process to introduce

task departures. These arrival and departure processes emulate the task blocking/non-blocking events

(such as page faults and I/O events) that take place in a real system. While an arrival event adds a

task to the system run queue, a departure event removes a currently running task from the run queue.

We choose a running task to depart at a departure event, because most blocking (departure) events

typically affect only tasks that are currently running in a real system. In our simulation, the departing

task is chosen at random from among the currently running tasks. This ensures that the expected

runtime of any task is independent of its share, as a task is equally likely to depart every time it is run.

Our results again show that the system becomes non-work-conserving especially when the number

of tasks is close to the number of processors (see Figure 3). Interestingly, we find that the average

fraction of CPU cycles that are wasted decreases slightly as compared to the previous two scenarios

(observe this by comparing Figures 3(a) and 2(a)). This decrease is caused by new arrivals, each of

which introduces an additional eligible task into the system, causing an idle processor (if one exists)

to schedule this task. Without such arrivals, the processor would have idled until an existing ineligible

task became eligible. Departures, which should have the opposite effect, seem to have a smaller

impact on the non-work-conserving behavior. This diminished effect is because a task departs while

it is running (as explained above)—thus, it does not add to the number of ineligible tasks in the system

on finishing, that might have adversely affected the work-conserving behavior.

Finally, Figure 4 plots the effect of varying the arrival/departure rate on the system behavior. The

figure, plotted on a log scale, shows that increasing the inter-arrival times causes a slow increase in

the fraction of the time the system is non-work-conserving (since a larger inter-arrival time implies

fewer arrivals, which then reduces the probability that an idle processor schedules a newly arriving

task).

We conclude from our simulation study that DFS can exhibit non-work-conserving behavior when em-

ployed in a conventional multiprocessor operating system. Since the fraction of CPU cycles that can be

wasted can be as large as 10-12%, the DFS scheduler needs to be enhanced with an additional policy that

allocates idle processor bandwidth to tasks that are runnable but ineligible (so as to improve system utiliza-

tion). In the rest of this section we show how to combine DFS with an auxiliary work-conserving scheduler

to achieve this objective.

4.2 Combining DFS with Fair Airport Scheduling Algorithms

We draw upon the concept of fair airport scheduling to enhance DFS with an auxiliary policy to allo-

cate idle bandwidth to ineligible runnable tasks. The notion of fair airport was proposed in the context of

17

0

2

4

6

8

10

12

0 20 40 60 80 100

Id
le

 C
P

U
 c

yc
le

s
(%

)

Avg. number of threads in the system

Asynchronous quanta, arrivals/departures

2 cpus
4 cpus
8 cpus

16 cpus
32 cpus

0

20

40

60

80

100

1 1 4 1 8 1 16 1 32

%
 o

f n
on

-w
or

k-
co

ns
er

vi
ng

 c
lo

ck
 ti

ck
s

Number of CPUs simultaneously idle

Asynchronous quanta, arrivals/departures

2 cpus

4 cpus

8 cpus

16 cpus

32 cpus

(a) Variation with number of tasks (b) Number of simultaneously idle processors

Figure 3: Effect of arrivals and departures on the work-conserving behavior.

0

0.5

1

1.5

2

2.5

3

3.5

1 10 100 1000 10000

Id
le

 C
P

U
 c

yc
le

s
(%

)

Mean inter-arrival/departure time (ticks)

Asynchronous quanta, arrivals/departures(max quantum=10 ticks)

2 cpus
4 cpus
8 cpus

32 cpus

Figure 4: Effect of the arrival/departure rate on the work-conserving behavior.

18

rate regulator

 Guaranteed
service queue

‘ Auxiliary
service queue

GSQ scheduler

ASQ scheduler

FA Server

Figure 5: Fair Airport Scheduling Algorithm

scheduling packets at a network router [8, 12]. A fair airport scheduler attempts to combine a potentially

non-work-conserving scheduling algorithm with an auxiliary scheduler to ensure work-conserving behavior

at all times. Each packet (or task) in a fair airport scheduler joins a rate regulator and an Auxiliary Service

Queue (ASQ) (see Figure 5). The rate regulator is responsible for determining when a packet is eligible

to be scheduled. Once eligible, the packet passes through the regulator and joins the Guaranteed Service

Queue (GSQ) and is then serviced by the GSQ scheduler. If the guaranteed service queue becomes empty,

the ASQ scheduler is invoked to service packets in the ASQ (note that these are packets that are currently

ineligible). The combined scheduler always gives priority to the GSQ over the ASQ—the GSQ scheduler

gets to schedule packets so long as the GSQ is non-empty and the ASQ scheduler is invoked only when GSQ

becomes empty. Different scheduling algorithms may be employed for servicing packets in the guaranteed

service and auxiliary service queues. Depending on the exact choice of the ASQ and GSQ schedulers, it is

possible to theoretically prove properties of the combined scheduling algorithm (see [8, 12] for examples).

The concept of fair airport scheduling can also be employed to schedule tasks in a multiprocessor system.

Our instantiation of fair airport, referred to as DFS-FA, employs DFS as the GSQ scheduler. The rate

regulator for each task is simply its eligibility criterion (Equation 6); the rate regulator then ensures that a

task joins the guaranteed service queue only once in each period. The ASQ scheduler is used to service tasks

if the GSQ becomes empty. By servicing tasks that are runnable but ineligible, the ASQ scheduler ensures

that the combined scheduler is work-conserving at all times.

Any work-conserving scheduling algorithm can be used to instantiate the ASQ scheduler. We choose

a scheduler that services ineligible tasks in the increasing order of their start tags (i.e., when the GSQ

becomes empty, the task with the smallest start tag in the ASQ is scheduled for execution). There are a

number of reasons for choosing this scheduling policy. The implementation of the basic DFS algorithm

requires two queues—a queue for eligible tasks and one for ineligible tasks. The latter queue is sorted in

order of start tags, since this is the order in which tasks become eligible and are then moved to the eligible

queue (see section 6 for details). Consequently, the ASQ scheduler can be simply implemented by having

the ineligible queue double up as the auxiliary service queue, and by scheduling the tasks at the head of this

queue when the eligible queue (GSQ) becomes empty. Thus, our fair airport enhancement to DFS can be

implemented without any additional data structures or overheads as compared to the basic DFS algorithm.

Further, scheduling tasks in order of start tags is equivalent to using Start time fair queuing [13], a scheduling

19

algorithm that has known fairness and delay properties. Thus, choosing this scheduling policy has the added

benefit of providing provably predictable performance guarantees in the ASQ.

As a final caveat, we note that servicing ASQ tasks in order of start tags allows residual bandwidth to

be allocated to tasks in proportion to their shares (i.e., enables fair redistribution of residual bandwidth).

Criteria other than fairness can also be used to redistribute residual bandwidth. For instance, a priority-

based scheduler can be used to service the ASQ so as to give priority to certain tasks when allocating idle

bandwidth. A detailed study of such policies is beyond the scope of this paper.

5 Accounting for Processor Affinities in DFS

Another practical consideration that arises when implementing a CPU scheduler for a multiprocessor system

is that of processor affinities. Each processor in a multiprocessor system employs one or more levels of

memory caches. These caches store recently accessed data and instructions for each task. Scheduling a task

on the same processor enables it to benefit from the data cached from the previous scheduling instances

(and also eliminates the need to flush the cache on a context switch to maintain consistency). In contrast,

scheduling a task on a different processor can increase the number of cache misses and degrade performance.

Studies have shown that a scheduler that takes processor affinities into account while making scheduling

decisions can improve the effectiveness of the cache and the overall system performance [25].

Observe that the basic DFS algorithm uses internally generated deadlines (Equation 7) to make scheduling

decisions and ignores processor affinities. This limitation can be overcome by using one of two different

approaches. The first approach partitions the set of tasks among the p processors such that each processor is

load balanced and employs a local run queue for each processor. Each processor runs the DFS scheduler on

its local run queue. Binding a task to a processor in this manner allows the processor to exploit cache locality.

However, if all tasks were permanently bound to individual processors, then the load across processors

would most likely be unbalanced over time (due to blocking/termination events). Consequently, periodic

repartitioning of tasks among processors is necessary to maintain a balanced load. Another limitation of the

approach is that P-fairness guarantees can be provided only on a per-processor basis (instead of a system-

wide basis), since individual processors neither coordinate with each other nor have a balanced load.

A second approach to account for processor affinities is to employ a single global run queue and use a

more sophisticated metric for making scheduling decisions. Recall that the basic DFS algorithm stamps

each eligible task with a deadline (Equation 7). We modify this deadline value to incorporate processor

affinities in the following manner. We define a modified pseudo-deadline D for an eligible task as a function

of its DFS-deadline and its affinity for the processor currently being scheduled:

D = d + α · A, (18)

where d denotes the DFS-deadline of the task, α is a positive constant and A is a measure of its affinity for

the processor being scheduled. For instance, in the simplest case, A is defined as 0 for the processor that a

task ran on last and 1 for all other processors. Thus, α · A represents the penalty for scheduling a task with

poor processor affinity. The scheduler then picks the task with the minimum pseudo-deadline.

20

Assuming that the DFS algorithm maintains a list of eligible tasks sorted on their deadlines, the scheduling

algorithm would then need to compute the pseudo-deadline D of each task in this list before picking the task

with the minimum value of D (since D is a processor dependent metric, it is not possible to compute its

value for each task a priori). This approach makes scheduling decisions linear in the number of eligible tasks,

which can be expensive in systems with a large number of tasks. Scheduling decisions can be made more

efficient (constant time) by defining a window W that limits the number of tasks that must be examined for

their pseudo-deadlines before picking a task. The window represents a tradeoff between fairness guarantees

and processor affinities. A small window favors fairness (by picking the tasks with short deadlines and better

approximating P-fairness) but can reduce the chances of finding a task with good affinity. In the extreme

case, W = 1 reduces the scheduler to a pure DFS scheduler. In contrast, a large window can increases

the chances of finding a task with an affinity for the processor but can increase unfairness. Thus, W is a

tunable parameter that allows us to balance three conflicting tradeoffs—fairness, scheduling efficiency, and

processor affinities.

We conducted simulation experiments to determine the effectiveness of using pseudo-deadlines to account

for processor affinities. We explored the parameter space by varying the number of processors from 2 to

32, the number of tasks from 1 to 100, and the window size from 1 to 32. For each combination of these

parameters, we computed the percentage of times the scheduler is successfully able to pick a task with an

affinity for the processor and also the resulting unfairness in the allocation. Figure 6 shows our results for

some combinations of these parameters (we omit other results due to space constraints). The figure shows

that increasing W improves the effectiveness of the algorithm in picking a task with processor affinity

(examining a larger number of tasks increases the chances of picking the “right” task). As a rule of thumb,

we recommend that the window size be set to the number of processors (W = p) to balance the tradeoffs

of scheduling efficiency and processor affinity. As shown in Table 1, using this rule of thumb does not

greatly increase unfairness— tasks remain within one quantum of their due share for 83% of the time and

within two quanta away from their P-fair share for 99% of the time. As an aside, since we simulate a

system with asynchronous variable length quanta, even when W = 1, the basic DFS algorithm shows some

deviation from strict P-fairness (which would have constrained all tasks within one quantum of their ideal

share). These results indicate that using pseudo-deadlines can be an effective technique to handle processor

affinities in small to medium-sized multiprocessor systems (< 32 processors).

In what follows we discuss the implementation of DFS in the Linux kernel.

6 Implementation Details

We have implemented the DFS algorithm as well as the two enhancements discussed in Sections 4 and 5 into

the Linux kernel (source code for our implementation is available from our web site). Our DFS scheduler,

implemented in version 2.2.14 of the kernel, replaces the standard time-sharing scheduler in Linux. Our

implementation allows each task to specify a share φi. Tasks can dynamically change or query their shares

using two new system calls, setshare and getshare. These system calls are described in Table 2.

21

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35

%
 o

f t
im

es
 ta

sk
 c

ho
se

n
w

ith
ou

t a
ffi

ni
ty

Window size

Asynchronous quanta, no arrivals/departures (4 CPUs)

num_tasks=40
num_tasks=60
num_tasks=80

num_tasks=100

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35

%
 o

f t
im

es
 ta

sk
 c

ho
se

n
w

ith
ou

t a
ffi

ni
ty

Window size

Asynchronous quanta, no arrivals/departures (16 CPUs)

num_tasks=40
num_tasks=60
num_tasks=80

num_tasks=100

(a) 4-CPU system (b) 16-CPU system

Figure 6: Effect of Window size on Processor Affinity

Table 1: Deviation from P-fairness for a 4-processor system

Window Deviation from ideal share

Size (% of scheduling instances)

0-1 1-2 >2

quanta quanta quanta

1 83.38 16.55 0.07

2 83.44 16.50 0.06

4 83.76 16.18 0.06

8 83.99 15.95 0.06

16 83.84 16.10 0.06

32 83.51 16.42 0.07

Their interface is very similar to the Linux system calls setpriority and getpriority that are used

to assign priorities to tasks in the standard time-sharing scheduler.

Our implementation of DFS maintains two run queues—one for eligible tasks and the other for ineligible

tasks (see Figure 7). The former queue consists of tasks sorted in deadline order; DFS services these tasks

using EDF. The latter queue consists of tasks sorted on their start tags, since this is the order in which tasks

become eligible. Once eligible, a task is removed from the ineligible queue and inserted into the eligible

queue.

The actual scheduler works as follows. Whenever a task’s quantum expires or it blocks for I/O or departs,

the Linux kernel invokes the DFS scheduler. The scheduler first updates the start tag and finish tag of the

Table 2: System calls used for controlling weights of tasks

Syscall Description

int setshare(int which, Set the share of a process,

int who, int share) process group or user

int getshare(int which, Return processor share of a process,

int share) process group or user

22

Eligible Queue

DFS

Ineligible Queue

CPU

CPU

p

.

.

.

Primary
Scheduler

Auxiliary
Scheduler

Sorted by

deadlines

Start tags

If idle

CPUs

CPU

2

 1

Sorted by

Figure 7: DFS-FA Scheduler

task relinquishing the CPU. Next, it recomputes the virtual time based on the start tags of all the runnable

tasks. Based on this virtual time, it determines if any ineligible tasks have become eligible, and if so, moves

them from the ineligible queue to the eligible queue in deadline order. If the task relinquishing the CPU is

still eligible, it is reinserted into the eligible queue, else it is marked ineligible and inserted into the ineligible

queue in order of start tags. The scheduler then picks the task at the head of the eligible queue and schedules

it for execution.

The two enhancements proposed to the DFS algorithm are implemented as follows:

• Fair airport: The fair airport enhancement can be implemented by simply using the eligible queue as

the GSQ and the ineligible queue as the ASQ. If the eligible queue becomes empty, the scheduler picks

the task at the head of the ineligible queue and schedules it for execution. Thus, the enhancement can

be implemented with no additional overheads and results in work-conserving behavior.

• Processor affinities: We consider the approach that employs a single global run queue and pseudo-

deadlines to account for processor affinities (and do not consider the approach that employs a local

run queue for each processor). We assume that the window size W is specified at boot time. At

each scheduling instance, the DFS scheduler computes the pseudo-deadlines of the first W tasks in

the eligible queue and schedules the task with the minimum pseudo-deadline value (see (18)). By

choosing an appropriate value of α in (18), the scheduler can be biased appropriately towards picking

tasks with processor affinities (larger values of α increase the bias towards tasks with an affinity for a

processor).

7 Experimental Evaluation

In this section, we describe the results of our experimental evaluation. We conducted experiments to (i)

demonstrate proportional allocation property of DFS-FA, (ii) show the performance isolation provided by

it to applications, and (iii) measure the scheduling overheads imposed by it. Where appropriate, we use

the Linux time-sharing scheduler as a baseline for comparison. In what follows, we first describe our

experimental test-bed, and then present the experimental results.

23

0

100000

200000

300000

400000

500000

600000

700000

1:1 1:2 1:3 1:4 1:5 1:6 1:7 1:8

N
um

be
r

of
 lo

op
s

pe
r

se
c

Weight assignment

Processor share received by dhrystones

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 lo

op
s

pe
r

se
c

(x
10

00
)

Number of background tasks

Processor share received by a dhrystone task

DFS
Time sharing

(a) Proportionate Allocation (b) Application Isolation

Figure 8: Proportionate Allocation and Application Isolation with DFS-FA

7.1 Experimental Setup

For our experiments, we used a 500 MHz Pentium III-based dual-processor PC with 128 MB RAM, 13GB

SCSI disk and a 100 Mb/s 3-Com ethernet card (model 3c595). The PC ran the default installation of

RedHat Linux 6.2. We used Linux kernel version 2.2.14 for our experiments, which employed either the

time-sharing or the DFS-FA scheduler depending on the experiment. The system was lightly loaded during

our experiments.

The workload for our experiments consisted of a mix of sample applications and benchmarks. These

include : (i) mpeg play, the Berkeley software MPEG1 decoder, (ii) mpg123, an audio MPEG and MP3

player, (iii) dhrystone, a compute-intensive benchmark for measuring integer performance, (iv) gcc, the

GNU C compiler, (v) RT task, a program that emulates a real-time task, and (vi) lmbench, a benchmark that

measures various aspects of operating system performance. Next, we describe the results of our experimental

evaluation.

7.2 Proportional Allocation and Application Isolation

We first demonstrate that DFS-FA allocates processor bandwidth to applications in proportion to their shares,

and in doing so, it also isolates each of them from other misbehaving or overloaded applications. To show

these properties, we conducted two experiments with a number of dhrystone applications. In the first exper-

iment, we ran two dhrystone applications with relative shares of 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7 and 1:8 in

the presence of 20 background dhrystone applications. As can be seen from figure 8(a), the two applications

receive processor bandwidth in proportion to the specified shares.

In the second experiment, we ran a dhrystone application in the presence of increasing number of back-

ground dhrystone tasks. The processor share assigned to the foreground task was always equal to the sum

of the shares of the background jobs. Figure 8(b) plots the processor bandwidth received by the foreground

task with increasing background load. For comparison, the same experiment was also performed with the

default Linux time-sharing scheduler. As can be seen from the figure, with DFS-FA, the processor share

received by the foreground application remains stable irrespective of the background load, in effect isolating

24

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10

A
vg

. R
es

po
ns

e
tim

e
(m

s)

Number of RT tasks

Real-time tasks with background jobs

Figure 9: Performance of DFS when scheduling a mix of real-time applications.

the application from load in the system . Not surprisingly, the time-share scheduler is unable to provide

such isolation. These experiments demonstrate that while DFS-FA is no longer strictly P-fair, it nevertheless

achieves proportional allocation. In addition, it also manages to isolate applications from each other.

7.3 Impact on RealTime and Multimedia Applications

In the previous subsection, we demonstrated the desirable properties of DFS-FA using a synthetic, compute-

intensive benchmark. Here, we demonstrate how DFS-FA can benefit real-time and multimedia applications.

To do so, we first ran an experiment with a mix of RT tasks, each of which emulates a real-time task. Each

task receives periodic requests and performs some computations that need to finish before the next request

arrives; thus, the deadline to service each request is set to the end of the period. Each real-time task requests

CPU bandwidth as (x, y) where x is the computation time per request, and y is the inter-request arrival

time. In the experiment, we ran one RT task with fixed computation and inter-arrival time, and measured

its response time with increasing number of background real-time tasks. As can can be seen from figure

9, the response time is independent of the other tasks running in the system. Thus, DFS-FA can support

predictable allocation for real-time tasks.

In the second experiment, we ran the streaming audio application (an MP3 player) in the presence of a

large number of background compilation jobs. This scenario is typical on a desktop, where a user could be

working (in this case, compiling a large application) while listening to audio music. Figure 10(a) demon-

strates that the performance of the streaming audio application remains stable even in the presence of in-

creasing background jobs. We repeated this experiment with streaming video; a software decoder was

employed to decode and display a 1.5 Mb/s MPEG-1 file in the presence of other best-effort compilation

jobs. Figure 10(b) shows that the frame rate of the mpeg decoder remains stable with increasing background

load, but less so than the audio application. We hypothesize that the observed fluctuations in the frame rate

are due to increased interference in disk accesses. The data rate of a video file is significantly larger than

that of an audio file, and the increased I/O load due to the compilation jobs interfere with the reading of

the MPEG-1 file from disk. Overall, these experiments demonstrate that DFS-FA can support real-time and

multimedia applications.

25

0

20

40

60

80

100

0 2 4 6 8 10

T
im

e
fo

r
pl

ay
in

g
au

di
o

fil
e

(s
ec

)

Number of simultaneous compilations

MP3 player with background compilations

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10

M
P

E
G

 F
ra

m
e

ra
te

 (
fr

am
es

/s
ec

)

Number of simultaneous compilations

MPEG decoding with background compilations

(a) Streaming Audio (b) Streaming Video

Figure 10: Performance of multimedia applications.

Table 3: Lmbench Results

Test Linux DFS

syscall overhead 0.7 µs 0.7 µs

fork() 400 µs 400 µs

exec() 2 ms 2 ms

Context switch (2 proc/ 0KB) 1 µs 5 µs

Context switch (8 proc/ 16KB) 15 µs 20 µs

Context switch (16 proc/ 64KB) 178 µs 181 µs

7.4 Scheduling Overheads

In this section, we describe the scheduling overheads imposed by the DFS-FA scheduler on the kernel. We

used lmbench, a publicly available operating system benchmark, to measure these overheads. Lmbench

was run on a lightly loaded system running the time-sharing scheduler, and again on a system running the

DFS-FA algorithm. We ran the benchmark multiple times in each case to reduce experimental error. Table

3 summarizes the results we obtained. We report only those lmbench statistics that are relevant to the CPU

scheduler. As can be seen from Table 3, the overhead of creating tasks (measured using fork and exec

system calls) is comparable in both cases. However, the context switch overhead increases by about 3-5

µs. This overhead is insignificant compared to the quantum duration used by the Linux kernel, which is

several orders of magnitude larger (typical quantum durations range from tens to hundreds of milliseconds;

the default quantum duration used by the Linux kernel is 200ms).

8 Concluding Remarks

In this paper, we presented Deadline Fair Scheduling (DFS), a proportionate-fair CPU scheduling algorithm

for multiprocessor servers. A particular focus of our work was to investigate practical issues in instantiat-

ing proportionate-fair schedulers in general-purpose operating systems. Our simulation results showed that

characteristics of general-purpose operating systems such as the asynchrony in scheduling multiple proces-

sors, frequent arrivals and departures of tasks, and variable quantum durations can cause a P-fair scheduler

26

such as DFS to become non-work-conserving. To overcome these limitations, we enhanced DFS using

the fair airport scheduling framework to ensure work-conserving behavior at all times. We then proposed

techniques to account for processor affinities while scheduling tasks in multiprocessor environments. Our

resulting scheduler trades strict fairness guarantees for more practical considerations. We implemented the

resulting scheduler, referred to as DFS-FA, in the Linux kernel and demonstrated its performance on real

workloads. Our experimental results showed that DFS-FA can achieve proportional allocation, performance

isolation and work-conserving behavior at the expense of a small increase in the scheduling overhead. We

conclude that combining a proportionate-fair scheduler such as DFS with considerations such as work-

conserving behavior and processor affinities is a practical approach for scheduling tasks in multiprocessor

operating systems.

Acknowledgements

This research was supported in part by a NSF Career award CCR-9984030, NSF grants ANI 9977635,

CDA-9502639, EIA-0080119, Intel, IBM, EMC, Sprint, and the University of Massachusetts. We would

also like to thank James Anderson, Sanjoy Baruah and Krithi Ramamritham for numerous discussions on

P-fair scheduling algorithms.

References

[1] J. Anderson and A. Srinivasan. A New Look at Pfair Priorities. Technical report, Dept of Computer Science,

Univ. of North Carolina, 1999.

[2] J. Anderson and A. Srinivasan. Early-Release Fair Scheduling. In Proceedings of the 12th Euromicro Conference

on Real-Time Systems, Stockholm, Sweden, June 2000.

[3] J. Anderson and A. Srinivasan. Mixed Pfair/ERfair Scheduling of Asynchronous Periodic Tasks. In Proceedings

of the IEEE Euromicro Conference on Real-Time Systems, June 2001.

[4] G. Banga, P. Druschel, and J. Mogul. Resource Containers: A New Facility for Resource Management in Server

Systems. In Proceedings of the third Symposium on Operating System Design and Implementation (OSDI’99),

New Orleans, pages 45–58, February 1999.

[5] S. Baruah, J. Gehrke, and C. G. Plaxton. Fast Scheduling of Periodic Tasks on Multiple Resources. In Proceed-

ings of the Ninth International Parallel Processing Symposium, pages 280–288, April 1996.

[6] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate Progress: A Notion of Fairness in

Resource Allocation. Algorithmica, 15:600–625, 1996.

[7] A. Chandra, M. Adler, P. Goyal, and P. Shenoy. Surplus Fair Scheduling: A Proportional-Share CPU Scheduling

Algorithm for Symmetric Multiprocessors. In Proceedings of the Fourth Symposium on Operating System Design

and Implementation (OSDI 2000), San Diego, CA, October 2000.

[8] R.L. Cruz. Service Burstiness and Dynamic Burstiness Measures: A Framework. Journal of High Speed Net-

works, 2:105–127, 1992.

[9] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a Fair Queueing Algorithm. In Proceedings

of ACM SIGCOMM, pages 1–12, September 1989.

[10] K. Duda and D. Cheriton. Borrowed Virtual Time (BVT) Scheduling: Supporting Lantency-sensitive Threads in a

General-Purpose Scheduler. In Proceedings of the ACM Symposium on Operating Systems Principles (SOSP’99),

Kiawah Island Resort, SC, pages 261–276, December 1999.

27

[11] P. Goyal, X. Guo, and H.M. Vin. A Hierarchical CPU Scheduler for Multimedia Operating Systems. In Pro-

ceedings of Operating System Design and Implementation (OSDI’96), Seattle, pages 107–122, October 1996.

[12] P. Goyal and H M. Vin. Fair Airport Scheduling Algorithms. In Proceedings of the Seventh International

Workshop on Network and Operating System Support for Digital Audio and Video (NOSSDAV’97), St. Loius,

MO, pages 273–281, May 1997.

[13] P. Goyal, H. M. Vin, and H. Cheng. Start-time Fair Queuing: A Scheduling Algorithm for Integrated Services

Packet Switching Networks. In Proceedings of ACM SIGCOMM’96, pages 157–168, August 1996.

[14] M B. Jones, D Rosu, and M Rosu. CPU Reservations and Time Constraints: Efficient, Predictable Scheduling

of Independent Activities. In Proceedings of the sixteenth ACM symposium on Operating Systems Principles

(SOSP’97), Saint-Malo, France, pages 198–211, December 1997.

[15] Ian Leslie, Derek McAuley, Richard Black, Timothy Roscoe, Paul Barham, David Evers, Robin Fairbairns,

and Eoin Hyden. The Design and Implementation of an Operating System to Support Distributed Multimedia

Applications. IEEE Journal on Selected Areas in Communication, 14(7):1280–1297, September 1996.

[16] C. W. Mercer, S. Savage, and H. Tokuda. Processor Capacity Reserves: Operating System Support for Multime-

dia Applications. In Proceedings of the IEEE ICMCS’94, May 1994.

[17] M. Moir and S Ramamurthy. Pfair Scheduling of Fixed and Migrating Periodic Tasks on Multiple Resources. In

Proceedings of the 20th Annual IEEE Real-Time Systems Symposium, Phoenix, AZ, December 1999.

[18] J. Nieh and M S. Lam. The Design, Implementation and Evaluation of SMART: A Scheduler for Multimedia

Applications. In Proceedings of the sixteenth ACM symposium on Operating systems principles (SOSP’97),

Saint-Malo, France, pages 184–197, December 1997.

[19] A. Parekh and R. Gallager. A Generalized Processor Sharing Approach to Flow Control in Integrated Services

Networks – The Single Node Case. In Proceedings of IEEE INFOCOM ’92, pages 915–924, May 1992.

[20] A.K. Parekh. A Generalized Processor Sharing Approach to Flow Control in Integrated Services Networks. PhD

thesis, Department of Electrical Engineering and Computer Science, MIT, 1992.

[21] A. Srinivasan and J. Anderson. Efficient Scheduling of Soft Real-time Applications on Multiprocessors. Tech-

nical report, Dept of Computer Science, Univ. of North Carolina, December 2002.

[22] A. Srinivasan and J. Anderson. Optimal Rate Based Scheduling on Multiprocessors. In Proceedings of the ACM

Symposium on Theory of Computing, May 2002.

[23] A. Srinivasan and J. Anderson. Fair Scheduling of Dynamic Task Systems on Multiprocessors. In Proceedings

of the International Workshop on Parallel and Distributed Real-Time Systems, April 2003.

[24] A. Srinivasan, P. Holman, and J. Anderson. Integrating Aperiodic and Recurrent Tasks on Fair-scheduled Multi-

processors. In Proceedings of the IEEE Euromicro Conference on Real-Time Systems, June 2002.

[25] R. Vaswani and J. Zahorjan. The Implications of Cache Affinity on Processor Scheduling for Multiprogrammed

Shared Memory Multiprocessors. In Proceedings of the 13th ACM Symposium on Operating Systems Principles,

pages 26–40, October 1991.

[26] C. Waldspurger and W. Weihl. Stride Scheduling: Deterministic Proportional-share Resource Management.

Technical Report TM-528, MIT, Laboratory for Computer Science, June 1995.

28

List of Tables

1 Deviation from P-fairness for a 4-processor system . 22

2 System calls used for controlling weights of tasks . 22

3 Lmbench Results . 26

29

List of Figures

1 Use of deadlines and periods to achieve proportionate allocation. 6

2 Effect of asynchronous quanta on the work-conserving behavior. 16

3 Effect of arrivals and departures on the work-conserving behavior. 18

4 Effect of the arrival/departure rate on the work-conserving behavior. 18

5 Fair Airport Scheduling Algorithm . 19

6 Effect of Window size on Processor Affinity . 22

7 DFS-FA Scheduler . 23

8 Proportionate Allocation and Application Isolation with DFS-FA 24

9 Performance of DFS when scheduling a mix of real-time applications. 25

10 Performance of multimedia applications. 26

30

Affiliation of Authors

Department of Computer Science,

University of Massachusetts,

Amherst, MA 01003

List of Footnotes

1. See http://lass.cs.umass.edu/software/gms.

2. Multimedia/streaming media applications are an important subset of the class of soft real-time appli-

cations. Note that, there could be other applications such as virtual reality that are soft real-time but

do not involve streaming audio and video.

3. Note that the difference of 1 in the deadline values is due to the way they are defined in each algorithm,

with DFS defining the deadline as the end of the last possible quantum and PF-priority defining the

deadline as the start of the last possible quantum. Further, this difference does not affect the schedules

of the two algorithms, as the tasks are chosen in order of their deadlines, which is not affected by this

difference of 1 quantum.

31

Keywords

Proportionate-fairness

Multiprocessor

Scheduling

Real-time

Proportional-share

Deadline

Eligibility

Work-conserving

32

